A decision support system for optimal deployment of sonobuoy networks based on sea current forecasts and multi-objective evolutionary optimization
نویسندگان
چکیده
A decision support system for the optimal deployment of drifting acoustic sensor networks for cooperative track detection in underwater surveillance applications is proposed and tested on a simulated scenario. The system integrates sea water current forecasts, sensor range models and simple drifting buoy kinematic models to predict sensor positions and temporal network performance. A multi-objective genetic optimization algorithm is used for searching a set of Pareto optimal deployment solutions (i.e. the initial position of drifting sonobuoys of the network) by simultaneously optimizing two quality of service metrics: the temporal mean of the network area coverage and the tracking coverage. The solutions found after optimization, which represent different efficient tradeoffs between the two metrics, can be conveniently evaluated by the mission planner in order to choose the solution with the desired compromise between the two conflicting objectives. Sensitivity analysis through the Unscented Transform is also performed in order to test the robustness of the solutions with respect to network parameters and environmental uncertainty. Results on a simulated scenario making use of real probabilistic sea water current forecasts are provided showing the effectiveness of the proposed approach. Future work is envisioned to make the tool fully operational and ready to use in real scenarios. 2013 NATO Science and Technology Organization, Centre for Maritime Research and Experimentation. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Optimal Location and Sizing of Distributed Generations in Distribution Networks Considering Load Growth using Modified Multi-objective Teaching Learning Based Optimization Algorithm
Abstract: This paper presents a modified method based on teaching learning based optimization algorithm to solve the problem of the single- and multi-objective optimal location of distributed generation units to cope up the load growth in the distribution network .Minimizing losses, voltage deviation, energy cost and improved voltage stability are the objective functions in this problem. Load g...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کاملApplying evolutionary optimization on the airfoil design
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...
متن کاملA NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES
This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013